Gambarlahgrafik fungsi f: x → 2x pada bidang Cartesius dengan domain dan kodomainnya himpunan bilangan riil. Jawab : Terdapat beberapa langkah untuk menggambarkan suatu grafik fungsi, sebagai berikut. (1) Tentukan domainnya. Untuk memudahkan, ambil beberapa bilangan bulat di sekitar nol. (2) Buat tabel pasangan berurutan fungsi tersebut. Contohfungsi adalah fungsi f yang memetakan A ke B dengan aturan f: x → 2x + 2. Cara membaca Notasi fungsi. Dari notasi fungsi tersebut, x adalah anggota domain. Fungsi x → 2x memiliki arti bahwa fungsi f memetakan x ke 2x. Jadi daerah hasil x oleh fungsi f adalah 2x. Jadi kamu bisa menotasikannya menjadi f(x) = 2x. Jika fungsi f: x → ax Diberikansuatu domain D dan f fungsi kontinu pada D. Jika untuk sebarang lintasan tertutup C di dalam D, Z f (z)dz = 0 C tunjukkan bernilai konstan pada D dan f (z) = 2 untuk semua z ∈ D. 3. Diketahui f fungsi utuh dengan sifat terdapat bilangan real u0 sehingga Re{f (z)} ≤ u0 untuk semua z ∈ C. Tunjukkan f merupakan fungsi konstan A) DEFINISI FUNGSI Fungsi f atau pemetaan f dari himpunan A ke himpunan B adalah suatu relasi khusus yang memasangkan setiap elemen dari himpunan A (domain) dengan tepat pada satu elemen dari himpunan B (kodomain). (B) DOMAIN DAN RANGE FUNGSI Daerah asal (Domain) fungsi =() adalah nilai-nilai supaya =() terdefinisi. Suatufungsi yang bersifat injektif sekaligus surjektif; Aljabar Fungsi. Penjumlahan f dan g Diketahui grafik fungsi f' dan g' dengan beberapa nilai fungsi f dan g sebagai berikut. x -7 dan x > 2 Maka domain y = f(x) adalah D f = {x|x -7 atau x > 2, x∈R}f(x) = (x-2) log(x + 2) Tentukandomain dan range dari fungsi berikut ! Sumber: Dokumentasi penulis Sumber: f -1 = {(y,x) l y∈B dan x∈A}. Suatu fungsi f : A → B dikatakan memiliki fungsi invers f -1 : Diketahui fungsi f dan g adalah fungsi bijektif yang ditentukan dengan f(x) Inverssuatu fungsi biasanya dilambangkan dengan f-1 (x). Menentukan invers fungsi berarti menukar kedudukan antara domain serta kodomain. Apa itu domain dan apa itu kodomain? Domain merupakan daerah asal dan kodomain merupakan daerah hasil. Sehingga bila diketahui fungsi f memetakan dari A ke B maka maka invers fungsi dari f memetakan dari B ke A. Secarasimbolik, ilustrasi dan contoh di atas bisa kita tulis sebagai f : A→B, fungsi f memetakan semua anggota himpunan A ke satu anggota himpunan B secara tepat. Artinya, f memetakan anggota himpunan A, yaitu x, ke suatu anggota himpunan B, yaitu y.Peta tersebut dinyatakan dengan notasi f(x).Oleh karenanya, notasi di atas dapat lebih lanjut ditulis sebagai f : x → y, fungsi f memetakan x Diketahuisuatu fungsi f dengan domain A={6,8, 10,12} dan kodomain himpunan bilangan asli. seperti ini maka penyelesaiannya adalah yang bisa kita buat menjadi F6 tinggal masukkan saja nilai x yang 6 kedalam fungsi fx nilai F 6 nilainya = 3 x dengan 6 dikurang dengan 43 * 6 adalah 18 dikurang 4 nilainya adalah 14 Kemudian untuk yang ke-2 Fungsi(pemetaan) merupakan relasi dari himpunan A ke himpunan B, jika setiap anggota himpunan A berpasangan tepat satu dengan anggota himpunan B. Semua anggota himpunan A atau daerah asal disebut domain, sedangkan semua anggota himpunan B atau daerah kawan disebut kodomain. Hasil dari pemetaan antara domain dan kodomain disebut range fungsi 5UT9. Notasi Fungsi, Daerah Asal Domain, Daerah Kawan Kodomain, dan Range A. Definisi dan Notasi Fungsi Sebagaimana di materi dasar fungsi, definisi fungsi adalah istilah relasi khusus dalam ilmu matematika yang memetakan tepat satu-satu elemen himpunan daerah asal domain ke elemen himpunan daerah kawan kodomain. Fungsi dalam konteks relasi dinotasikan sebagai f A → B. Berikut akan dijelaskan mengenai nilai fungsi, notasi, domain, kodomain, range, dan grafik fungsi dalam koordinat kartesius. Navigasi Cepat A. Definisi dan Notasi Fungsi A1. Notasi Fungsi A2. Nilai Fungsi B. Daerah Asal Domain Fungsi C. Daerah Kawan Kodomain Fungsi D. Daerah Hasil Range Fungsi D1. Contoh Range Fungsi Diskrit dan Grafiknya D2. Contoh Range Fungsi Interval dan Grafiknya A1. Notasi Fungsi dan Contohnya Notasi fungsi dalam konteks secara umum dinotasikan dengan huruf kecil misalnya fx, gx, hx, dan lainnya. Misalnya notasi relasi fungsi f A → B dapat diubah ke bentuk notasi fungsi umum. f A → B fA = B B = fA Penggambaran fungsi umumnya digambarkan dalam koordinat kartesius. Berikut dasar notasi fungsi sebagai fungsi yang memetakan sumbu x domain ke sumbu y kodomain dalam koordinat kartesius di R². f x → y fx → y y = fx Misalnya diketahui bentuk beberapa persamaan fungsi berikut. y = 2x + 3 y = 4x + 8 y = 3x - 7 Ketiga fungsi di atas dapat dinotasikan dalam notasi fungsi fx = 2x + 3 gx = 4x + 8 hx = 3x - 7 A2. Nilai Fungsi dan Contohnya Nilai fungsi adalah nilai yang yang dihasilkan oleh substitusi suatu elemen domain ke dalam fungsinya. Semua nilai fungsi menghasilkan himpunan daerah hasil yang disebut range. Suatu fungsi fx = 2x + 1, tentukan nilai fungsi untuk x = 2 dan x = 3 terhadap fungsi fx! Penyelesaian Nilai fungsi fx untuk x = 2 Dapat diketahui model fungsi fx adalah 2x + 1 fx = 2x + 1 f2 = 22 + 1 = 4 + 1 = 5 Nilai fungsi fx untuk x = 3 fx = 2x + 1 f3 = 23 + 1 = 6 + 1 = 7 Jadi, nilai fungsi f2 = 5 dan f3 = 7. Daerah asal domain suatu fungsi adalah himpunan elemen-elemen yang dimasukkan ke dalam model suatu fungsi. Dalam diagram relasi fungsi, domain merupakan himpunan pertama yang berelasi. Contoh 1. Suatu fungsi fx = 2x mempunyai domain bilangan bulat x 0, tulis notasi domain fungsi fx dan elemen-elemennya! Df = {0 < x < 10 x bilangan bulat} = {1, 2, 3, 4, 5, 6, 7, 8, 9} 2. Suatu fungsi gx = 3x + 3 mempunyai domain bilangan real x ≥ 0, tulis notasi domain fungsi fx dan elemen-elemennya! Dg = {x ≥ 0 x bilangan real} = {0, ..., 1, ..., ∞} Banyak bilangan real antara 2 bilangan bulat adalah tidak terhingga, sulit untuk menuliskannya secara langsung. C. Daerah Kawan Kodomain Daerah kawan suatu fungsi adalah himpunan yang memuat nilai-nilai fungsi yang mungkin. Himpunan kodomain dapat memuat elemen-elemen lain yang tidak termasuk dalam nilai fungsinya. Namun, semua nilai fungsinya range harus ada dalam kodomain fungsinya. Contoh C1 Soal Kodomain Fungsi Suatu fungsi fx = 1, dapat mempunyai kodomain berupa bilangan bulat {1, 2, 3}, karena dapat diketahui range fungsinya adalah {1} D. Range Fungsi Range suatu fungsi adalah himpunan daerah hasil yang merupakan himpunan semua nilai fungsi, hasil dari substitusi tiap elemen-elemen domain terhadap model fungsinya. Contoh D1 Menentukan range fungsi diskrit dan grafiknya Hitung range fungsi fx = x + 1 dengan himpunan domain x = {1, 2, 3, 4} dan plot grafik fungsi tersebut dalam koordinat kartesius! Penyelesaian fx = x + 1 Df = {1, 2, 3, 4} Menghitung Range Fungsi Menghitung range fungsi dilakukan dengan membuat tabel substitusi elemen x ke model fungsi fx fx = x + 1 f1 = 1 + 1 = 2 f2 = 2 + 1 = 3 f3 = 3 + 1 = 4 f4 = 4 + 1 = 5 Sehingga diperoleh tabel berikut. x 1 2 3 4 fx 2 3 4 5 Jadi, range fungsi fx adalah {2, 3, 4, 5}. Membuat Grafik Fungsi Elemen fungsi fx merupakan nilai diskrit titik-titik nilai yaitu domain {1, 2, 3, 4} dengan range {2, 3, 4, 5}. Sehingga grafik fungsi yang dihasilkan berupa titik-titik range dalam koordinat kartesius. Berikut grafik yang dihasilkan tabel di langkah sebelumnya. Grafik Fungsi fx dalam Koordinat Kartesius Contoh D2 Menentukan range fungsi interval dan grafiknya Hitung range fungsi gx = x² dengan himpunan domain x dengan -3 ≤ x ≤ 3 x ∈ ℝ, dan plot grafik fungsi tersebut dalam koordinat kartesius! Penyelesaian gx = x² Dg = {-3 ≤ x ≤ 3 x ∈ ℝ} Sehingga, domain fungsi gx merupakan interval bilangan real dari -3 hingga 3. Menghitung Range Fungsi Menghitung range fungsi dilakukan dengan membuat tabel substitusi elemen x ke model fungsi fx. Domain fungsi merupakan interval bilangan real, sehingga range fungsi yang dihasilkan juga termasuk interval bilangan real. Untuk mempermudah perhitungan dapat dilakukan pengujian titik-titiknya dalam interval tertentu, misalnya interval dari {-3 ≤ x ≤ 3 x ∈ ℝ} diperoleh -3, -2, -1, 0, 1, 2, 3. gx = x² g-3 = -3² = 9 g = = g-2 = -2² = 4 g = = g-1 = -1¹ = 1 g = = g0 = 0² = 0 g = = g1 = 1² = 1 g = = g2 = 2² = 4 g = = g3 = 3² = 9 Sehingga diperoleh tabel berikut. x -3 -2 -1 0 1 2 3 gx 9 4 1 0 1 4 9 Jadi, range fungsi gx adalah {0 ≤ Rg ≤ 9 Rg ∈ ℝ}. Membuat Grafik Fungsi Elemen fungsi gx merupakan interval bilangan real, yaitu domain {-3 ≤ x ≤ 3 x ∈ ℝ} dengan range {0 ≤ Rg ≤ 9 Rg ∈ ℝ}. Sehingga grafik fungsi gx dapat menghasilkan garis dalam koordinat kartesius. Berikut grafik yang dihasilkan tabel di langkah sebelumnya. Grafik Fungsi gx dalam Koordinat Kartesius Sehingga grafik yang dihasilkan fungsi gx dengan domain {-3 ≤ x ≤ 3 x ∈ ℝ} adalah garis kurva. Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Notasi Fungsi, Daerah Asal Domain, Daerah Kawan Kodomain, dan Range". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih... Contoh Soal Domain Fungsi, Rumus, dan Cara Menentukannya – Dalam ilmu Matematika tentunya terdapat materi mengenai domain fungsi. Bagaimana cara menentukan domain fungsi itu? Domain fungsi merupakan salah satu materi fungsi selain range. Apa pengertian domain fungsi itu? Dalam sebuah fungsi tentunya terdapat dua variabel di setiap persamaannya seperti variabel bebas dan variabel terikat. Nilai variabel terikat yang dimiliki secara harfiah memang didasarkan pada nilai variabel bebasnya. Contohnya variabel bebas pada fungsi y = fx = 3x + y yaitu x dan y merupakan variabel terikat. Fungsi dari x tersebut berupa y. Nilai yang dimiliki oleh variabel x memang valid sehingga dapat disebut dengan domain atau daerah asal, Sedangkan nilai yang dimiliki variabel y dapat disebut dengan range atau daerah hasil. Domain Suatu Fungsi Dalam materi domain fungsi yang akan saya jelaskan ini berisi pembahasan mengenai cara menentukan domain fungsi dan contoh soal domain fungsi. Kita tahu bahwa pengertian domain fungsi secara luas ialah nilai nilai x yang dikelompokkan dalam bentuk persamaan apapun. Sedangkan kumpulan dari nilai y tersebut temasuk dalam kategori range. Ketika di bangku sekolah tentunya kita pernah diajarkan mengenai materi domain fungsi dengan beberapa cara pengerjaan di dalamnya. Materi ini juga muncul dalam soal soal ujian Matematika, baik ujian sekolah ataupun ujian sekolah. Contents1 Contoh Soal Domain Fungsi, Rumus, dan Cara Jenis Jenis Rumus Domain Contoh Soal Domain Fungsi Meski sudah dibahas dalam berbagai kesempatan tapi faktanya banyak siswa merasa kesulitan menentukan domain fungsi karena rumus yang kompleks. Sebenarnya ada trik khusus agar kalian bisa menghitung domain fungsi dengan cepat. Tapi pertama kalian harus tau terlebih dahulu apa itu domain dalam matematika. Domain fungsi secara umum memang berguna untuk menghasilkan nilai keluaran karena terkumpulnya nilai niai dalam fungsi dimasukkan. Untuk itulah nilai x dalam domain ini dapat masuk setelah dikumpulkan secara lengkap sehingga kita dapat memperoleh nilai y nya. Lalu bagaimana cara mencari domain fungsi itu? Pada kesempatan kali ini saya akan membagikan contoh soal domain fungsi dan cara menentukan domain fungsi. Di bawah ini terdapat penjelasan mengenai jenis jenis fungsi, rumus domain fungsi, dan contoh soal domain fungsi yaitu diantaranya Jenis Jenis Fungsi Pada umumnya kita harus memahami jenis jenis fungsi terlebih dahulu sebelum menerapkan tata cara menyelesaikan soal soal domain fungsi. Macam macam fungsi ini tentunya merupakan materi dasar untuk dipelajari dan dipahami dalam sebuah fungsi. Berikut penjelasan mengenai jenis jenis pada sebuah fungsi yaitu Fungsi polinomial yang penyebutnya tidak mempunyai akar atau variabel. Maka dari itu semua bilangan real di dalamnya termasuk dalam domain fungsi. Fungsi pecahan yang mempunyai variabel di bagian penyebutnya. Untuk itu nilai x harus dikeluarkan untuk menentukan domain fungsinya saat bagian bawah persamaannya disamakan dengan nol. Fungsi dengan variabel tanda akar. Cara menentuan domain fungsi yang memiliki tanda akar di dalamnya dapat dilakukan dengan mengeluarkan variabel di dalam akarnya dan dibuat lebih dari nol. Kemudian kita juga dapat menentukan nilai x nya. Fungsi logaritma natural In. Domain fungsi ini dapat ditentukan dengan membuat bagian dalam kurung bernilai lebih dari nol. Fungsi grafik. Domain fungsinya dapat diselesaikan dengan melihat grafik didalamnya. Fungsi hubungan. Domain fungsi ini dapat diselesaikan dengan membuat daftar koordinat x saja, meskipun koordinat y juga terdaftar. Setelah memahami jenis jenis fungsi di atas, selanjutnya saya akan menjelaskan tentang cara menentukan domain fungsi tersebut. Pada umumnya contoh soal domain fungsi dapat diselesaikan dengan mudah apabila penulisan domain pada fungsinya jelas dan benar. Penulisan domain ini biasanya terletak dalam kurung terbuka, dimana dua batas titik domain serta pemisah komanya diberikan. Setelah itu ditutup dengan kurung tertutupnya. Misalnya [-1, 3, dimana bilangannya dimulai dari angka -1 sampai 3. Penulisan domain fungsi tersebut memperhatikan beberapa hal penting di dalamnya seperti Penunjukkan angka pada domain fungsi biasanya menggunakan kurung seperti [ atau ]. Contohnya [-1. 3, maka domain fungsinya berupa -1. Angka angka tertentu yang tidak tercantum dalam domain fungsi biasanya disertai dengan tanda kurung seperti atau . Contohnya [-1, 3, maka angka 3 tidak tercantum dalam domain karena domainnya telah berhenti di angka sebelum 3. Misalnya 2,9999… Bagian bagian pada domain memiliki jarak pemisah dan dihubungkan dengan lambang “U” berarti Gabungan atau Union. Misalnya [-1, 3 U 3, 8 sehingga dimulainya domain tersebut berawal dari angka -1 hingga 8. Namun 8 dan -1 tergolong dalam domain, walaupun mengandung jarak di domain 3. Menggunakan tanda negatif tak terbatas apabila arah domain yang ditunjukkan tidak terbatas serta dapat menggunakan tanda tak terbatas pula. Tanda tak terbatas yang dimaksud dapat berbentuk dan bukan [ ]. Rumus Domain Fungsi Sebelum membagikan contoh soal domain fungsi tersebut, maka saya akan membagikan beberapa cara mencari domain fungsi ini. Domain fungsi pada dasarya dapat dicari meggunakan beberapa cara seperti di bawah ini Contoh Soal Domain Fungsi Setelah membahas tentang cara mencari domain fungsi di atas. Selanjutnya saya akan membagikan contoh soal terkait materi domain fungsi tersebut. Berikut contoh soal dan pembahasannya yaitu 1. Tentukan domain dari fungsi di bawah ini soal domain fungsi ini dapat diselesaikan dengan cara seperti berikutNilai penyebut ≠ 0 5x – 15 ≠ 0 5x ≠ 15 x ≠ 3Jadi domain dari fungsi tersebut ialah Df = {xx ≠ 3, x ∈ R}. 2. Tentukan daerah asal dari fungsi di bawah ini menentukan domain fungsi ini menggunakan konsep tanda dalam akar seperti di bawah ini15 – 5x ≥ 0 15 ≥ 5x 5x ≤ 15 x ≤ 3 Kemudian untuk fungsi logaritma dapat ditentukan domainnya dengan cara2x – 2 > 0 2x > 3 x > 1Jadi daerah asal fungsi tersebut adalah 1 < x ≤ 3. Sekian penjelasan mengenai contoh soal domain fungsi dan cara menentukan domain fungsi. Domain fungsi dalam arti sederhana dapat dinamakan dengan daerah asal. Semoga artikel ini dapat bermanfaat dan terima kasih telah membaca materi domain fungsi di atas. Matematika Dasar » Fungsi › Domain dan Range Fungsi, Contoh Soal dan Pembahasan Domain & Range Fungsi Jika \x\ dan \y\ terkait oleh persamaan \y = fx\, maka himpunan semua nilai \x\ yang memenuhi agar fungsi \y=fx\ ada atau terdefinisi disebut daerah asal domain. Himpunan nilai \y\ yang dihasilkan untuk setiap \x\ yang memenuhi disebut daerah hasil range. Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Fungsi merupakan konsep penting dalam matematika. Fungsi biasanya dinotasikan dengan huruf kecil seperti \f, g, h\, dan seterusnya. Sebagai contoh, suatu fungsi \f x \to y\, dibaca fungsi \f\ memetakan anggota himpunan \x\ ke anggota himpunan \y\. Biasa ditulis juga dengan \fx=y\. Dengan demikian, jika terdapat fungsi \fx=x^3-4\, maka \begin{aligned} f2 &= 2^3 - 4 = 4 \\[8pt] fa &= a^3-4 \\[8pt] fa+h &= a+h^3-4 \\[8pt] &= a^3 + 3a^2h + 3ah^2 + h^3 - 4 \end{aligned} Setelah Anda memahami cara menuliskan fungsi dengan baik, sekarang mari kita beralih ke istilah penting terkait fungsi yakni daerah asal domain dan daerah hasil range. Jika \x\ dan \y\ terkait oleh persamaan \y = f x\, maka himpunan semua input atau nilai \x\ yang diperbolehkan atau yang memenuhi disebut daerah asal domain fungsi \fx\, sedangkan himpunan output atau nilai-\y\ yang dihasilkan untuk setiap nilai \x\ yang memenuhi disebut daerah hasil range dari \fx\. Sebagai contoh, misalkan terdapat suatu fungsi \fx=x^2+1\. Jika daerah asalnya dirinci sebagai \\{-1,0,1,2,3\}\, maka daerah hasilnya yaitu \\{1,2,5,10\}\. Perhatikanlah Gambar 1. Gambar 1. Domain dan Range Fungsi \fx=x^2+1\ Terkadang kondisi tertentu dapat memaksa pembatasan restriction pada nilai input \x\ yang diperbolehkan atau yang memenuhi dari suatu fungsi. Misalnya, jika \y\ menunjukkan luas suatu persegi dengan panjang sisi \x\, maka variabel-variabel ini dihubungkan oleh persamaan \y = x^2\. Karena panjang suatu persegi tidak mungkin negatif, maka kondisi ini memaksakan diberlakukannya persyaratan bahwa \x≥0\. Dalam beberapa kasus kita akan menyatakan domain secara eksplisit saat mendefinisikan suatu fungsi. Misalnya, jika \fx=x^2\ adalah luas persegi dengan sisi \x\, maka kita bisa menuliskan untuk mengindikasikan bahwa daerah asal domain fungsi \fx=x^2\ adalah semua himpunan bilangan riil tak negatif \ x \geq 0 \. Perhatikan Gambar 2 di bawah. Gambar 2. Ketika suatu fungsi didefinisikan dengan rumus matematika, rumus itu sendiri dapat memberlakukan pembatasan pada input atau nilai \x\ yang diperbolehkan atau yang memenuhi. Sebagai contoh, jika \y = 1 / x\, maka \x = 0\ bukanlah input yang diperbolehkan karena pembagian dengan nol tidak terdefinisi. Jika \y = \sqrt{x}\, maka nilai negatif \x\ bukan input yang diperbolehkan karena akan menghasilkan nilai imajiner untuk \y\. Jika daerah asal sebuah fungsi tidak dirinci atau didefinisikan, maka kita selalu menganggap bahwa daerah asalnya adalah himpunan bilangan riil sehingga aturan fungsi ada maknanya dan memberikan nilai bilangan riil. Ini disebut daerah asal mula domain natural. Agar lebih jelas, kita akan membahas beberapa contoh soal untuk menentukan daerah asal domain dan daerah hasil range dari suatu fungsi. Contoh 1 Cari daerah asal domain untuk fungsi \ \displaystyle fx = \frac{1}{x-3} \. Pembahasan Daerah asal untuk \fx\ ini adalah \\{x ∈ R x ≠ 3 \}\. Ini dibaca “himpunan semua \x\ dalam bilangan riil \R\ sedemikian sehingga \x\ tidak sama dengan 3”. Kita kecualikan 3 untuk menghindari pembagian oleh 0. Contoh 2 Cari daerah asal domain untuk fungsi \ \displaystyle fx = \sqrt{9-t^2} \. Pembahasan Di sini kita harus membatasi \t\ sedemikian sehingga \9-t^2≥0\ dengan tujuan menghindari nilai-nilai tak riil untuk \\sqrt{9-t^2}\. Ini dicapai dengan mensyaratkan bahwa \t ≤ 3\. Dengan demikian, daerah asal fungsi \ fx = \sqrt{9-t^2} \ adalah \\{ t ∈ R t ≤ 3\}\. Dalam cara penulisan interval, kita dapat menulis daerah asal fungsi ini sebagai \[-3,3]\. Contoh 3 Tentukan domain fungsi \ fx = x^2 + 2x + 1 \. Pembahasan Tidak ada pembatasan yang diperlukan untuk \fx\ agar fungsinya terdefinisi. Dengan demikian, daerah asal domain dari fungsi ini adalah himpunan setiap bilangan riil atau bisa kita tuliskan juga sebagai \ -\infty 0 \. Dengan menyelesaikan pertidaksamaan ini, kita peroleh \ x > 5 \ atau \ x 5\. Contoh 6 Tentukan domain dari fungsi \ \displaystyle fx = \frac{5}{x^2-16} \. Pembahasan Agar fungsi ini terdefinisi maka penyebut tidak boleh nol sehingga kita peroleh \ x^2-16 \neq 0 \ atau \ x^2 \neq 16 \. Jadi, domain dari fungsi di atas adalah \ x \neq \pm 4 \. Contoh 7 Tentukan domain dari \ \displaystyle fx = \frac{4}{\sqrt{x-2}} \. Pembahasan Agar fungsi di atas terdefinisi maka \ x-2 \geq 0 \ atau \x \geq 2\. Dengan demikian, daerah asal domain dari fungsi di atas adalah \x \geq 2\. Contoh 8 UN 2018 IPS Daerah asal fungsi \ \displaystyle \frac{\sqrt{2x+6}}{3x+9} \ adalah… \ \{ x \ \ x \geq -3, \ x \neq 2, \ x \in R \} \ \ \{ x \ \ x \geq -2, \ x \neq 2, \ x \in R \} \ \ \{ x \ \ x \geq -4, \ x \neq 3, \ x \in R \} \ \ \{ x \ \ x \geq -3, \ x \in R \} \ \ \{ x \ \ x > -3, \ x \in R \} \ Pembahasan Syarat agar fungsi di atas terdefinisi adalah \begin{aligned} 2x+6 \geq 0 &\Rightarrow x \geq -3 \\[8pt] 3x+9 \neq 0 &\Rightarrow x \neq -3 \end{aligned} Jadi, domain atau daerah asal fungsi di atas adalah \ \{ x \ \ x > -3, \ x \in R \} \. Jawaban E. Contoh 9 UN 2018 IPS Daerah asal dari fungsi \ \displaystyle \frac{ \sqrt{2x+5} }{ 3x+2} \ adalah… \ \{ x \ \ x \neq -\frac{5}{2}, \ x \in R \} \ \ \{ x \ \ x \geq \frac{5}{2}, \ x \neq -\frac{2}{3}, \ x \in R \} \ \ \{ x \ \ x \geq -\frac{5}{2}, \ x \neq -\frac{2}{3}, \ x \in R \} \ \ \{ x \ \ x \neq -\frac{2}{3}, \ x \in R \} \ \ \{ x \ \ x \geq -\frac{2}{3}, \ x \in R \} \ Pembahasan Syarat fungsi di atas agar terdefinisi adalah sebagai berikut \begin{aligned} 2x+5 \geq 0 &\Rightarrow x \geq -\frac{5}{2} \\[8pt] 3x+2 \neq 0 &\Rightarrow x \neq -\frac{2}{3} \end{aligned} Jadi daerah asal dari fungsi di atas adalah \ \{ x \ \ x \geq -\frac{5}{2}, \ x \neq -\frac{2}{3}, \ x \in R \} \. Jawaban C. Contoh 10 UN 2019 IPA Agar fungsi \ \displaystyle fx = \sqrt{ \frac{3x^2+2x-8 }{x+2} } \ terdefinisi maka daerah asal \ fx \ adalah… \ \{ x \ \ x \leq -\frac{4}{3}, \ x \neq -2, \ x \in R \} \ \ \{ x \ \ x \geq \frac{4}{3}, \ x \in R \} \ \ \{ x \ \ x \geq -2, \ x \in R \} \ \ \{ x \ \ -2 < x \leq \frac{4}{3}, \ x \in R \} \ \ \{ x \ \ x < -2, \ \text{atau} \ x \geq \frac{4}{3}, \ x \in R \} \ Pembahasan Syarat agar fungsi di atas terdefinisi, yaitu \begin{aligned} \frac{3x^2+2x-8 }{x+2} \geq 0 \\[8pt] \frac{3x-4x+2}{x+2} \geq 0 \\[8pt] 3x-4 \geq 0 \\[8pt] x \geq \frac{4}{3} \end{aligned} Jadi, fungsi \fx\ terdefinisi jika daerah asalnya \ \{ x \ \ x \geq \frac{4}{3}, \ x \in R \} \. Jawaban B. Cukup sekian ulasan mengenai domain dan range dari suatu fungsi beserta contoh soal dan pembahasannya dalam artikel ini. Terima kasih telah membaca sampai selesai. Semoga bermanfaat. Sumber Purcell, Edwin J., Dale Verberg., dan Steve Rigdon. 2007. Calculus, ed 9. Penerbit Pearson. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan jika ada yang kurang jelas dari artikel ini silahkan tanyakan di kolom komentar. Terima kasih.